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ABSTRACT 

  
 The permeability of a saturated porous body can be determined from the kinetics 
of dilatation resulting from a change in pressure in the surrounding bath. This method 
was previously applied to aerogels [J. Gross and G.W. Scherer, J. Non-Cryst. Solids 325 
(2003) 34-47]. The theory is here extended to allow for the compressibility of the solid 
phase, so that the method can be applied to more rigid materials, such as concrete. A 
viscoelastic analysis indicates that creep of the sample will have a small effect on the 
measured permeability for cementitious materials, in most cases. However, the effect of 
entrapped air in the pore liquid is shown to have a drastic effect on the relaxation be-
havior, so it is essential to reduce the air content below ~0.1 volume %. For samples 
without entrapped air, a simple result is obtained that is tested in a companion paper. 
 

                                                
∗ Author to whom correspondence should be addressed. Email: scherer@princeton.edu 



– 1 – 

1. Introduction 
 
 The permeability of concrete controls the rate at which it absorbs water and sa-
line solutions [1,2], so knowledge of the permeability of concrete is essential for assess-
ing its durability. Unfortunately, conventional methods for measuring permeability are 
slow (so the sample can change during the course of the experiment [3]) and subject to 
errors owing to leaks of fluids subjected to high pressure [4]. For materials, such as ce-
ment paste and mortar, that are homogeneous on a centimeter scale, the most practical 
permeability measurement technique is beam-bending [5,6,7,8]. Bending a saturated 
beam creates a pressure gradient in the pore fluid, which flows until its pressure equili-
brates with that in the surrounding bath. The force required to hold the beam at a fixed 
deflection changes with the pore pressure; since the rate of relaxation of the force de-
pends on the permeability, an analysis of the force yields the permeability (as well as 
the elastic modulus and stress relaxation function). In principle, the bending method 
could be applied to concrete, but it would require impractically large samples (viz., 
minimum cross-section of 10 cm, minimum length/diameter ratio of 10, for a length of 
> 1 meter and a weight >25 kg). It would be ideal to have a method that uses standard 
strength cylinders for measuring permeability. Thermopermeametry (TPA) [9] can be 
used for heterogeneous materials, and has been demonstrated to work for cement paste 
[10,11,12], as well as gels [13]. The principle is that the pore liquid expands much more 
than the solid phase when a saturated body is heated, so the expanded liquid tends to 
flow out of the pores; if the permeability is low, then the thermal strain of the body will 
show time-dependent effects related to the flow of the pore liquid. This phenomenon is 
responsible for the well-known overshoot in the expansion of cement and concrete 
[14,15,16]. Recent attempts to apply the method to mortar, however, have shown that it 
is difficult to produce samples with the necessary degree of saturation [17,18]. 
 This paper presents an analysis of a method called dynamic pressurization (DP) 
for measuring permeability by applying hydrostatic pressure on a saturated sample. 
The principle is illustrated in Figure 1. A saturated sample is equilibrated in a pressure 
vessel containing a liquid at pressure p0 (typically, atmospheric). At the start of the 
measurement (time t = 0+), the pressure in the vessel (pv) is suddenly increased to pv = pA 
and the sample contracts, exhibiting a linear strain of ε0. The magnitude of ε0 depends 
on the bulk modulus of the porous solid, whose bulk modulus is Kp, and on the bulk 
modulus of the pore liquid, KL. Unless Kp << KL (as is the case for gels), the pore pres-
sure is less than the applied pressure (pp < pA) immediately after the pressure jump oc-
curs. However, over a period of time that depends on the permeability of the body, liq-
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uid from the vessel will flow into the pores and raise pp to pA. As the pore pressure in-
creases, the sample will re-expand somewhat, reaching a final strain of ε∞ that depends 
on the bulk modulus of the solid phase, KS. That is, once the pressure has equilibrated in 
the sample and the vessel, the solid phase is hydrostatically compressed by pressure pA. 
By measuring the kinetics of re-expansion, the permeability of the sample can be found; 
additionally, KS is obtained from ε∞, and Kp can be found from ε0, if KL is known and 
Poisson’s ratio of the solid is known or can be estimated.  
 Dynamic pressurization was previously applied to aerogels containing super-
critical fluid or vapor [19]. In that case, the solid network was so compliant that Kp was 
negligible compared to KS or KL, which simplifies the analysis considerably. Therefore, 
in the following section, the kinetics of a DP experiment is examined in detail for the 
general case, where Kp/KS is near unity. First, we present an elastic analysis, then exam-
ine the importance of viscoelastic relaxation of the solid phase. This was found to be 
important for TPA [11,12], but will be shown to be less so for DP. A much more impor-
tant problem is the presence of air bubbles in the pore liquid, because the equilibration 
of the pore pressure is dramatically delayed while the bubbles are being compressed. 
When bubbles are present, the kinetics cannot be calculated analytically, but we present 
numerical solutions to illustrate the magnitude of the problem. An experimental study 
[20] indicates that the kinetics of relaxation are well described by the elastic analysis, as 
long as the sample is saturated, but that long times can be required to achieve the re-
quired degree of saturation. 
 
2. Theory 
 
 The analysis of the DP experiment is based on the theory developed by Biot [21] 
and discussed in detail by Coussy [22]. The application of the theory to problems of the 
present type has recently been reviewed [23], so in this section we simply present the 
constitutive and continuity equations without derivation. The elastic case is presented 
in section 2.1 and the viscoelastic case in 2.2, for samples whose pores are saturated 
with liquid. When pockets of air or vapor are present in the pores, a different approach 
is required, as explained in section 2.3.  
 
2.1. Saturated elastic materials  
 
 For a saturated porous body whose solid phase is elastic, the form of the consti-
tutive equation is 
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and Ep and νp are Young’s modulus and Poisson’s ratio for the drained porous solid. 
The free strain is defined by 
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where p is the pore pressure, the bulk modulus of the drained porous solid is Kp = 
Ep/[3(1-2νp)], and the Biot coefficient is  
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where KS is the bulk modulus of the solid phase. Transport of the pore fluid is assumed 
to obey Darcy’s law [24], which means that the flux (J) of fluid is proportional to the 
gradient in pressure: 
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where k is the permeability (with units of area) and ηL is the viscosity of the liquid. The 
continuity equation is 
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where ε is the volumetric strain and the superscript dot indicates a partial derivative 
with respect to time. The Biot modulus, M, is defined by 
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where φ is the (liquid-filled) porosity and KL is the bulk modulus of the pore liquid (or, 
the reciprocal of its compressibility).  
 We are interested in a cylindrical sample with radius R, in which the flow is en-
tirely in the radial direction. In that case, eq. (5) becomes 
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where u = r/R is the dimensionless radial coordinate. For a saturated cylindrical body 
surrounded by fluid at pressure pA, the volumetric strain is [19] 
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where the angle brackets indicate a volumetric average, such that 
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The constant β is defined by 
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Using eqs. (2), (7), and (8), we obtain a partial differential equation for the pore pressure 
that can be written in the following form: 
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where 
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The physical significance of λ will be shown in section 2.1.2. The dimensionless time, θ, 
is defined by 
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where the hydrodynamic relaxation time, τv, is 
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This is the characteristic time that controls the rate of equilibration of the pore pressure. 
 We need to solve eq. (11) for p(u,θ), subject to the following conditions. Initially, 
the pore pressure is uniform and equal to atmospheric pressure, so p(u,0) = p0; thereaf-
ter, the surface is subjected to the applied pressure pA,, so p(1, θ) = pA(θ).  The solution is 
readily obtained by use of the Laplace transform, as shown in Appendix 1. The quantity 
of interest is the axial strain of the sample, which is found by substituting eq. (25) of ref. 
25 into eq. (1): 
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Using the average pressure from Appendix 1, the strain is found to be 
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The Laplace transform of the relaxation function, Ω, cannot be inverted analytically, but 
it can be obtained numerically, as described in Appendix 2. It is approximated with an 
absolute error < 0.002 by 
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where the exponent c is 
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The quality of the approximation is shown in Figure 2. The form of the constant term in 
eq. (17) is chosen to reproduce the exact value of Ω in the limit as   ! " 0 : 
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Thus, Ω(0) = 1 and Ω → 0 as θ → ∞; in fact, as shown in Figure 2, relaxation is nearly 
complete when θ  ≥  1. 
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2.1.1. Step-change in pressure 
 
 The most convenient way to do the experiment is to impose an “instantaneous” 
change in pressure, which means that pA rises from p0 to its final value over a period of 
time that is much less than τv. From Figure 2 we see that Ω has relaxed to 0.98 by the 
time that θ reaches 10-4, so the period during which the pressure change occurs should 
be ≤ 10-4 τv to avoid significant errors. If that is not possible, then the strain data can be 
analyzed using eq. (16), taking account of the actual pressure history. In the case where 
pA makes a step change at θ = 0, eq. (16) reduces to  
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where the instantaneous strain is 
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and the final strain is 
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From eqs. (15) and (20), we find that the average pressure in the sample at the moment 
that the pressure jump occurs is 
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Thus, the parameter λ, defined in eq. (12), represents the ratio of the pore pressure to 
the applied pressure following a sudden pressure jump. In the gel limit (Kp << KL , KS), λ 
= 1, so eq. (23) indicates that the pore pressure is immediately equilibrated with the ap-
plied pressure, because the liquid is not sheltered when the solid network is extremely 
compliant. The initial strain, eq. (21) then depends only on the compressibilities of the 
individual phases: 

 
  

!
0
" #

p
A

3M
" #

p
A

3

$
K

L

+
1 #$
K

S

%

&'
(

)*
, K

p
<< K

L
,K

S
 (24) 

  
where M is the Biot modulus, defined in eq. (6), in the gel limit where b = 1. On the 
other hand, if the pore liquid is compliant (for example, if the pores contain vapor), then 
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KL << Kp , KS; in that case, λ reduces to  
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Then eq. (21) reduces to  
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which means that the initial deformation is controlled only by the rigidity of the porous 
solid network, when no reinforcement is offered by the liquid. 
 
2.1.2. Step depressurization 
 
 Suppose that a step increase in pressure is applied at θ = 0, and then the pressure 
is reduced suddenly to zero at θ = θd. In this case, eq. (16) leads to 
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The form of the strain is illustrated in Figure 3. If θd is late enough so that Ω(θ) has effec-
tively relaxed to zero, then the strain following depressurization is simply given by 
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In this case, the shape of the relaxation curve is the same in the pressurization and de-
pressurization steps, so the same information is obtained in both steps. If the curves are 
not identical, it is an indication of a problem with the experiment, such as the existence 
of trapped air in the pores. This is discussed further in section 2.3. 
 
2.1.3. Extracting parameters from the data 
 
 From eq. (22) we see that the bulk modulus of the solid phase is found directly 
from the final strain value: 
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If we let x be the ratio of the initial and final strains, 
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then the bulk modulus of the porous network can be found from eqs. (21) and (22): 
 

 
  

K
p
= K

S

! " x + ! " 1( )KL
/K

S

x! " x! + x " 1( )KL
/K

S

#

$
%

&

'
(  (31) 

 
Generally, KL/KS << 1 (for example, KL = 2.2 GPa [26] for water and KS ≈ 30 GPa [6]), so 
eq. (31) reduces to  
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Eq. (32) is a relatively crude approximation, as it implies that λ = 0, whereas a typical 
value for a cementitious material would be λ ≈ 0.2-0.3; however, rough approximations 
to the moduli are sufficient for calculating the permeability, k. To find k, the data for 
strain versus time must be fitted to eqs. (17) and (20) to extract τv as a fitting parameter. 
The permeability is then given by 
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To evaluate eq. (34), a measurement or estimate of β is required; for cementitious mate-
rials, νp ≈ 0.2 [27], so β ≈ 0.5. Except for gels, KL is usually much smaller than Kp or KS, so 
the latter values do not need to be known very accurately to get a good value for k; only 
KL and φ are important, as they control the value of M, while the terms involving Kp and 
KS are relatively small. 
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2.2. Stress in the porous elastic body 
 
 During pressurization, the body is compressed and there is little risk of damage. 
However, during depressurization the tensile stress in the porous solid may exceed the 
tensile strength if the pressure in the chamber drops too rapidly. In this subsection, we 
will calculate the stresses generated during a step change and a linear change in pres-
sure.  
 From eq. (25) of ref. 25, the axial stress in the body is found to be 
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Here we have written pext for the pressure at the exterior surface of the sample. As ex-
plained in ref. 25, the stress that contributes to opening cracks is not σz, but σz + pext. This 
is so, because the external pressure acts within the crack to push it open, thus compen-
sating the effect of the pressure on the ends of the sample which tends to push flaws 
shut. The crack-opening stress in the body can thus be written as 
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and the crack-opening stress at the surface is 
 

 
  

! z

CO R( ) =
1 " 2#p

1 "#p

$

%
&

'

(
) b p " pext( ) =

1 " 2#p

1 "#p

$

%
&

'

(
) 3Kp *z + 1 " b( )pext
+, -.  (37) 

 
Suppose that the sample has been exposed to a pressure pext = pA until the strain is fully 
relaxed, and then the pressure is suddenly reduced to zero, as proposed in section 2.1.2. 
According to eq. (28), the strain at θ = θd is 
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Since pext = 0, eq. (37) indicates that the stress in the body following the pressure drop is 
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For a cementitious body it is reasonable to assume νp ≈ 0.2, b ≈ 2/3, and λ ≈ ¼, so eq. (39) 
indicates that the stress resulting from the pressure jump is ~(3/8) pA; consequently, 
damage is likely if the pressure step is more than about twice the tensile strength of the 
sample. 
 If the strains produced pressure jumps smaller than this are too small, then a 
large compressive jump can be applied to produce an easily measurable strain, and the 
pressure can be reduced gradually to avoid damage to the sample. Suppose that the 
pressure is reduced linearly according to 
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where depressurization occurs linearly over the time interval t0 and we define θ0 = t0/τv. 
This can be written much more compactly as 
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where H(x) is the Heaviside function, which is zero when x < 0 and unity when x > 0. 
As shown in Appendix 1, the strain in this case is given by 
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When θ < θd , the integral is zero and eq. (42) is equivalent to eq. (20). During depres-
surization,  
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Substituting this result into eq. (37), and assuming that the initial pressure was held 
long enough to relax the pore pressure (i.e., so that Ω(θ) ≈ 0 for θ > θd), we obtain 
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Figure 4 shows that the stress from zero at θ = θd to a maximum at θ = θd + θ0; the peak 
stress decreases rapidly as the interval allowed for depressurization increases. The 
variation in peak stress with θ0 is presented in Figure 5, which shows that the stress de-
creases by about an order of magnitude if the depressurization is allowed to occur over 
a period of time equal to the relaxation time, τv (so θ0 = 1). 
 
2.3. Saturated viscoelastic materials 
 
 If the porous solid is viscoelastic (VE), then the VE analogy [28] can be applied to 
analyze the axial strain: the stresses and strains in the constitutive equation, eq. (1), are 
replaced by their Laplace transforms, and the elastic properties are replaced by the 
transformed relaxation functions. This procedure is described in detail in refs. 5 and 9. 
Considerable simplification is achieved by recognizing that the Poisson’s ratio of a net-
work is more dependent on its connectivity than on the properties of its elements. For 
example, it is possible to construct a network with νp < 0 from solid struts whose own 
Poisson’s ratio is positive [29]. Therefore, since the strains involved in the present case 
are small, so that there is no significant change in the geometry of the network, we treat 
νp as a constant.  
 Another way to arrive at the same conclusion regarding νp is to recognize that 
Poisson’s ratio is related to the elastic shear and bulk moduli (Gp and Kp, respectively) 
by  
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By analogy [28], Poisson’s ratio for a VE material is given by the same expression, ex-
cept that the moduli are replaced by their respective Laplace transforms. If the shear 
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and bulk moduli have the same relaxation kinetics, described by the relaxation function 
ψ(t), then when we replace Kp with 

  
K

p
!!  and Gp with 
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Laplace transform of the variable with respect to t, and s is the transform parameter 
[30]. Upon introducing those functions into eq. (45), 

 
!! cancels out and we retrieve a 

constant νp. The rationale for assuming identical relaxation kinetics for the bulk and 
shear moduli is as follows. Any strain can be expressed in terms of deviatoric and di-
latational components (for example, a uniaxial strain is 2/3 shear and 1/3 dilatation). 
When a strain is imposed on a VE material, the shear strains relax about an order of 
magnitude faster than the dilatational strains, so the relaxation kinetics can be quite ac-
curately described by treating the bulk modulus as a constant, and allowing only shear 
strains to relax [see discussion in ref. 28, Ch. 7]. For a porous material, stress relaxation 
is achieved by bending or extensional deformation of the solid struts constituting the 
network; as long as the strains are too small to change the microstructure significantly, 
those local relaxations can be accurately approximated by taking account of the shear 
components alone. Thus, if the shear relaxation kinetics are described by ψ(t), we can 
ascribe those kinetics to Kp and Gp, leading to the conclusion that νp is constant.  
 An additional complication arises in the analysis of dynamic pressurization, ow-
ing to the importance of the hydrostatic pore pressure. The bulk modulus of the solid, 
KS, cannot be treated as a constant, as it was in the analysis of bending [5] or thermal 
expansion [31], where volumetric relaxation would have a small influence on the prop-
erty of interest. In the present case, relaxation of KS will directly affect ε∞ and will there-
fore alter the shape of the curve from which the permeability is extracted. For oxide liq-
uids, KS is found to relax by as much as a factor of 3 or 4, but the characteristic time for 
relaxation is about an order of magnitude longer than for relaxation of shear strains [ref. 
28, Ch. 18]. The form of the viscoelastic bulk modulus of the solid is 
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where KS is the instantaneous elastic modulus, KSR is the final (relaxed) value of the bulk 
modulus, and 
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and 
  
µ = K
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S
. As noted above, µ ≈ 0.25-0.4 for oxide liquids, but it might be lower for 

layered hydrates, such as those present in cementitious materials. According to the VE 
analogy, we replace KS in the elastic equations with 
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 The VE constitutive equation has the form, 
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where ψ is the uniaxial stress relaxation function [7,28]. The transform of the axial strain 
is 
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The transform of the continuity equation is 
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The solution for the transform of the axial strain is 
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and Ij is a modified Bessel function of the first kind of order j. The strain is calculated by 
inverting the transform, given by eq. (56), numerically, as explained in Appendix 2. 
 To illustrate the effect of VE relaxation, we will present calculations using meas-
ured and estimated properties of a Type III Portland cement paste made in our lab with 
water/cement ratio = 0.45, aged for one month in lime-saturated water [17]: KL = 2.2 
GPa [26], νp = 0.2 [27], Ep = 18.5 GPa, Kp = 10.3 GPa, φ = 0.48, KS (estimated) = 38.0 GPa; 
using these values, we obtain b = 0.73, M = 4.4 GPa, λ = 0.26. The form of the uniaxial 
relaxation function is taken from ref. 7: 
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This function has been found to provide an excellent fit to stress relaxation data for ce-
ment pastes from 1 to 360 days of age [6,7,8] and for mortar [17]. For the present calcula-
tions, we use τ1 = 1.7 x 109 s and τ2 = 1.7 x 104 s, as measured on the one-month old 
paste. The average relaxation time, found by integrating eq. (58) over time from 0 to ∞, 
is τVE = 2.9 x 105 s; this is relatively short, probably because the experiment was only 
continued long enough to relax ~20% of the stress, so the long-time tail of ψ was not 
captured. For this type of paste, longer relaxation runs indicate that τVE exceeds 106 s 
within 4 days of curing [7], and continues to rise thereafter; in mortar, relaxation is 
slower the higher the sand content [17]. To evaluate the influence of VE relaxation, we 
will evaluate eq. (56) for various values of the ratio 
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which is a measure of the relative rates of hydrodynamic relaxation (of the pore pres-



– 15 – 

sure) and stress relaxation in the porous network. Since we have no information about 
the kinetics of dilatational relaxation of the solid phase, we will use eq. (58) to represent 

 
!

D
 in eq. (48). Since dilatational relaxation is expected to be much slower than uniaxial 

relaxation of the network, this choice exaggerates the importance of viscoelasticity. We 
can also evaluate the relative importance of shear and dilatational relaxation by the 
choice of µ: if µ = 1, then the solid phase does not relax; a more realistic choice (based on 
the behavior of oxide melts) is µ ≈ 0.3. 
 Figure 6 shows the normalized strain for several values of Λ when µ = 1 or 0.3. In 
the former case, the curves have the same appearance, so the experimentalist has no in-
dication that relaxation is occurring. Application of eq. (29) would yield an underesti-
mate of KS. Fortunately, since the shape of the curves barely changes, the value of k ob-
tained by fitting to eq. (20) would be fairly accurate, as shown in Figure 7. The value of 
τv extracted from the fit agrees within ≤ 20%, as long as Λ ≤ 0.1. Since τVE is typically > 
106 s, this indicates that the permeability could be obtained with an error no greater 
than 20%, as long as the hydrodynamic relaxation time is ≤ 105 s. Recent DP experi-
ments performed on a cement paste with a permeability of ~10-21 m2 had a relaxation 
time of ~105 s for a sample with R= 4.9 cm. Therefore, we expect modest errors even for 
very low permeabilities, and better accuracy as k increases or R decreases, as both of 
these factors reduce τv relative to τVE. Figure 6b shows the influence of dilatational re-
laxation: when Λ approaches unity, the rapid compression of the solid phase causes the 
axial strain to pass through a maximum. That is, the rising pore pressure tends to ex-
pand the porous network, but this is offset by the contraction of the solid phase. The ef-
fect is exaggerated in these calculations, because we have set 

 
!

D
 equal to ψ, whereas it 

is expected to relax much more slowly. Nevertheless, Figure 7 shows that the dilata-
tional relaxation improves the accuracy of the fit, particularly if eq. (29) is only applied 
to the data up to the peak in the strain. This calculation illustrates two points: first, if 
dilatational relaxation is rapid, it is revealed by the occurrence of a maximum in the 
strain recovery curve; second, even when this phenomenon occurs, accurate values can 
be obtained for the permeability by fitting the data before the maximum. None of the 
experimental curves from the preliminary study [20] exhibit a maximum, so we con-
clude (based on Figure 7) that the dilatational relaxation in cement paste is negligible, 
and the permeabilities extracted from the DP experiment are accurate within ~10%. 
 
2.4. Unsaturated elastic materials 
 
 A much more serious problem than VE relaxation is the presence of air bubbles 
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in the pore liquid, because the rise in pore pressure is delayed while the gas in the bub-
ble is being compressed. Therefore, in this section we will revise the elastic analysis to 
allow for a volume fraction, v, of air in the pore liquid. Since we are concerned with en-
trapped air, it is reasonable to assume that it is uniformly distributed throughout the 
body. (The approach we will take would not be appropriate for a partially dried body, 
where the air-filled pores are concentrated near the outer surface. However, it should be 
valid for the uniformly distributed desaturation resulting from consumption of water 
by hydration of cement.) Consider a volume V containing volume VL of liquid and VG of 
an ideal gas, subjected to pressure p. The volume of gas varies as 
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and that of the liquid varies as 
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so the total volume is given by 
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If we define the apparent bulk modulus of the liquid/gas mixture to be 
 
K

L

A , then 
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where 

  
v =V

G
p

0( ) V p
0( )  is the initial volume fraction of gas in the liquid. Figure 8 

shows that 
 
K

L

A  remains well below KL, even when the pressure is 10 MPa, if v ≥ 0.01. 
The amount of entrapped air in concrete is typically estimated to be ~3%, unless special 
precautions are taken, so the pore liquid can be expected to be much more compliant 
than in a fully saturated sample. We will evaluate this quantitatively by replacing KL 
with 

 
K

L

A  in the continuity equation, and calculating the effect on the strain. 
 To account for the presence of air, we replace KL with 
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L

A  in eq. (8) of ref. 23; as a 
result, eq. (5) becomes 
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where we redefine the Biot modulus as 
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Consequently, the first term on the left side of eq. (11) is replaced by  
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where 
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As long as a > 0, the continuity equation is nonlinear and cannot be solved analytically. 
However, it can be solved numerically, as explained in Appendix 3.  
 Figure 9 shows the pressure distribution in a cylinder containing a negligible 
amount of entrapped air (v = 10-4) and a typical quantity (v = 0.03), subjected to p = 7 
MPa at time θ = 0. In the former case, the pressure rises instantly to the applied pressure 
at the surface, u = r/R = 1; the interior rises smoothly to that pressure by the time θ = 1. 
As shown in Figure 9b, when entrapped air is present, the internal pressure rises 
slowly. Once the pressure wave reaches the axis of the cylinder (u = 0), when θ ≈ 2, the 
interior pressure equilibrates rapidly, but the whole process takes about three times as 
long as for a saturated sample.  
 Figure 10 provides a comparison of the strain evolution for samples of cement 
paste with the properties cited earlier, containing entrapped air at volume fractions of v 
= 0, 0.01, 0.02, and 0.03. The time to equilibrate the strain doubles by the addition of 1% 
air and triples with 3%. At such high air contents there is an inflection in the curve that 
alerts the experimentalist to the problem, but to avoid errors it is advisable to perform a 
series of pressurization/depressurization cycles to insure that they are identical. If air is 
present, it will dissolve gradually, so that the curves will converge toward a constant 
shape from which the permeability can be extracted with confidence. To avoid errors 
from entrapped air, the simulations indicate that v must be held below 0.1%, which is 
quite low for cementitious materials. For v > 0.001, the initial strain is found to obey eq. 
(26), indicating that the liquid/gas mixture is too compliant (compared to Kp) to con-



– 18 – 

tribute to the rigidity of the sample. It would be necessary to mix under vacuum to 
achieve such low gas contents; alternatively, it might be useful to mix under a flow of 
carbon dioxide, as that gas is so soluble that it will be rapidly eliminated by pressuriza-
tion. 
 
3. Discussion 
 
 Dynamic pressurization permits measurement of the permeability of materials as 
delicate as aerogels [19] and as rigid as cement paste [20]. In the present paper, we have 
provided an analysis that permits calculation of the bulk moduli of the porous network 
(Kp) and the solid phase (KS), as well as the permeability (k). The accuracy of the calcula-
tions, particularly for KS, can be compromised by viscoelastic effects, but for cementi-
tious materials the errors are expected to be small (< 10% for k). If significant VE relaxa-
tion occurs, it is reflected as a maximum in the strain recovery curve. More problematic 
is the effect of entrapped air, which may be difficult to avoid. Precautions should be 
taken to minimize entrapped air during sample preparation, but it is always advisable 
to use a sequence of pressurization/depressurization steps to insure that the relaxation 
curves are identical. In that way, the results are certain to be free of error caused by gas 
pockets. 
 It is important to avoid damaging the sample during depressurization. A sudden 
drop of pressure causes tensile stress equal to about half the pressure drop. For a brittle 
material, this may cause microcracking that raises the permeability. To avoid damage, 
one can either use pressure jumps that are small compared to the tensile strength, or use 
a large compressive jump followed by a slow release of pressure. If the pressure is re-
leased over a period equal to the hydrodynamic relaxation time of the sample, the ten-
sile stress is reduced by an order of magnitude compared to that produced by a sudden 
depressurization. 
 Experimental tests of the method are presented in a companion paper [32]. 
 
Acknowledgments 
 
 This work was supported by a grant from the National Science Foundation, Divi-
sion of Civil and Mechanical Systems, grant CMS-0070092. 
 
  



– 19 – 

Appendix 1. Solution of eq. (11) 
 
 The solution proceeds in much the same way as in ref. 9. First we apply the 
Laplace transform with respect to θ [30], 
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where s is called the transform parameter. This reduces the continuity equation to an 
ordinary differential equation in u that is easily solved. The transformed pressure is 
given as a function of pA and the volume-averaged pressure, 

  
!p s( ) ; the latter quantity 

is found by averaging the solution over u, solving for the average pressure, and substi-
tuting that into the solution for 
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where 
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The average pore pressure is found by averaging eq. (69), then the transformed strain is 
found from the transform of eq. (15): 
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Numerical inversion of this equation is discussed in Appendix 2. We can, however, ex-
amine its early time behavior analytically. Expanding eq. (74) in a Taylor series yields 
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Large values of s correspond to small values of time, so the early behavior of Ω is found 
by neglecting terms involving reciprocals of higher powers of s in eq. (75). The result is 
eq. (19).  
 The strain following a step increase in pressure is obtained by setting 

  
!p

A
equal to 

pA/s. For the case where the pressure jumps to pA at θ = 0, then steps back to zero at θ = 
θd, the transform of the pressure is 
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The transform of  dpA d!  is 

  
s !p

A
; substituting these results into eq. (73) and inverting the 

transform leads to eq. (27). 
 If the pressure in the chamber is reduced linearly, according to eq. (41), the 
Laplace transform of the pressure at the exterior surface of the sample is 
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From eq. (73), we obtain 
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Inserting eq. (77) into eq. (78) and inverting the transform yields eq. (42) of the text. 
 
Appendix 2. Numerical evaluation of Ω  
 
 The inversion of the function h(s) can be done analytically, as explained in ref. 19, 
but evaluation of  !!  must be done numerically. We used the Stehfest algorithm in the 
routine NumericalInversion [33] in Mathematica® [34]. The notebook with the detailed 



– 21 – 

calculations is available from the present author. Values of  !!  were generated at equal 
logarithmic intervals in time over 10-4 ≤ θ ≤ 3, and the data were fitted to eq. (17) using 
KaleidaGraph® [35]. 
 
Appendix 3. Numerical solution of eq. (64) 
 
 The numerical solution of the continuity equation for a body whose pores con-
tain gas pockets in the liquid, 
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was obtained using the function NDSolve in Mathematica® [34]. The routine cannot ac-
cept boundary or initial conditions at zero, so the initial conditions were specified at θ = 
10-10 and the symmetry condition, 

  
!p !u

u=0
= 0 , was applied at u = 10-10. To avoid a dis-

continuity in the boundary condition, the pressure jump was written as 
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The term involving the derivative of pA in eq. (79) was also written as the derivative of 
the tanh function. The term involving the derivative of the average pressure was writ-
ten as the integral of the derivative of p. The maximum step size for u and θ was set to 
10-3, which was sufficient to eliminate messages indicating failure to converge. When 
the volume fraction of air was set to a value ≤ 10-3, the numerical solution converged on 
the analytical solution for the air-free case. The solution is returned as an interpolating 
function, which can be used to plot or list the pressure, or integrated to get the average 
pressure and then used to find the strain from eq. (15). The pressure distributions in 
Figure 9 were produced from the interpolating function using the Mathematica® plotting 
function, Plot3D. 
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Figure Captions 
 
 
Figure 1. Schematic of dynamic pressurization experiment. The sample is enclosed in a 
vessel full of fluid. Initially, the pressure in the vessel (pv) and in the pore fluid (pp) is 
equal to atmospheric pressure (p0). At the start of the experiment (time t= 0+), the pres-
sure in the vessel is suddenly raised to some higher value, pA; the sample is compressed 
by a linear strain equal to ε0, so the pore pressure rises, but does not immediately reach 
pA. Over time, the liquid from the vessel penetrates the pores of the sample until the 
pore pressure equilibrates at pA; the final strain (ε∞) results from compression of the 
solid phase by the applied pressure. 
 
Figure 2. Approximation of the hydrodynamic relaxation function, Ω(θ), using eq. (17); 
symbols represent the value of the function (evaluated using the methods described in 
Appendix 2) and the solid curve is the approximation. The function is evaluated using 
parameter values typical of concrete: β = 1/2, b = 2/3, λ = ¼.  
 
Figure 3. Schematic of strain produced during pressurization (at time t/τv = 0), followed 
by depressurization (at time t/τv = 1). In this case, before the pressure is released, the 
pore pressure has very nearly equilibrated at pA, so the shapes of relaxation curves are 
identical. 
 
Figure 4. Normalized stress during step pressurization over a period equal to θd = 1, fol-
lowed by depressurization at a linear rate over reduced time interval θ0. 
 
Figure 5. Normalized peak stress during depressurization at a linear rate as a function 
of the depressurization interval, θ0. 
 
Figure 6. Calculated axial strain, normalized by 
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S
, for various values of 

 
! = "

v
"

VE
; symbols are values obtained by numerical evaluation of eq. (56) and curves 

are fits to eq. (20). In (a) no dilatational relaxation occurs (µ = 1), but in (b) the bulk 
modulus of the solid relaxes to 0.3 times its original value; in the latter case, only data 
up to the peak in the strain are used in the fit when Λ = 1. 
 
Figure 7. Results of fitting eq. (20) to values obtained from numerical evaluation of eq. 
(56) for various values of 
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VE
, where “τv input” was used in the evaluation and 
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“τv fit” was obtained from the fit; perfect agreement is represented by the horizontal 
dashed line at a ratio of unity. The upper curve is for a material in which there is no 
dilatation of the solid phase (µ = 1) and the lower curve applies when the bulk modulus 
of the solid relaxes to 0.3 times its instantaneous value (µ = 0.3). The curves are for fits 
to all data up to t = τv, but the square symbols are for fits up to the peak in the strain 
curve (see Figure 6b). 
 
 
Figure 8. Ratio of apparent bulk modulus of gas/liquid mixture, 

 
K

L

A , to true bulk 
modulus of liquid, KL, for several values of the volume fraction of air, v, as a function of 
the applied pressure, p. The calculation assumes KL = 2.2 GPa (characteristic of water) 
and p0 = 0.1 MPa (atmospheric pressure). 
 
Figure 9. Pressure distribution as a function of radial position, u = r/R, and time, θ = 
t/τv for volume fractions of air equal to (a) v = 0.0001 and (b) v = 0.03. 
 
Figure 10. Axial strain, εz, as a function of time, θ = t/τv for volume fractions of air (for 
curves from left to right) equal to v = 0, 0.01, 0.02, 0.03. 
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Figure 1. Schematic of dynamic pressurization experiment. The sample is enclosed in a 
vessel full of fluid. Initially, the pressure in the vessel (pv) and in the pore fluid (pp) is 
equal to atmospheric pressure (p0). At the start of the experiment (time t= 0+), the pres-
sure in the vessel is suddenly raised to some higher value, pA; the sample is compressed 
by a linear strain equal to ε0, so the pore pressure rises, but does not immediately reach 
pA. Over time, the liquid from the vessel penetrates the pores of the sample until the 
pore pressure equilibrates at pA; the final strain (ε∞) results from compression of the 
solid phase by the applied pressure. 
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Figure 2.  Approximation of the hydrodynamic relaxation function, Ω(θ), using eq. (17); 
symbols represent the value of the function (evaluated using the methods described in 
Appendix 2) and the solid curve is the approximation. The function is evaluated using 
parameter values typical of concrete: β = 1/2, b = 2/3, λ = ¼.  
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Figure 3. Schematic of strain produced during pressurization (at time t/τv = 0), followed 
by depressurization (at time t/τv = 1). In this case, before the pressure is released, the 
pore pressure has very nearly equilibrated at pA, so the shapes of relaxation curves are 
identical. 
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Figure 4. Normalized stress during step pressurization over a period equal to θd = 1, fol-
lowed by depressurization at a linear rate over reduced time interval θ0. 
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Figure 5. Normalized peak stress during depressurization at a linear rate as a function 
of the depressurization interval, θ0. 
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Figure 6. Calculated axial strain, normalized by 

  
!"

#
= p

A
3K

S
, for various values of 

 
! = "

v
"

VE
; symbols are values obtained by numerical evaluation of eq. (56) and curves 

are fits to eq. (20). In (a) no dilatational relaxation occurs (µ = 1), but in (b) the bulk 
modulus of the solid relaxes to 0.3 times its original value; in the latter case, only data 
up to the peak in the strain are used in the fit when Λ = 1. 



– 33 – 

 
 
 

0.6

0.8

1

1.2

1.4

0.6

0.8

1

1.2

1.4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

µ = 0.3 (all)
µ = 0.3 (peak)
µ = 1 (all)

!
v
 f

it
 /

 !
v
 i
n
p
u
t

!
v
 / !

VE  
 
 
Figure 7. Results of fitting eq. (20) to values obtained from numerical evaluation of eq. 
(56) for various values of 

 
! = "

v
"

VE
, where “τv input” was used in the evaluation and 

“τv fit” was obtained from the fit; perfect agreement is represented by the horizontal 
dashed line at a ratio of unity. The upper curve is for a material in which there is no 
dilatation of the solid phase (µ = 1) and the lower curve applies when the bulk modulus 
of the solid relaxes to 0.3 times its instantaneous value (µ = 0.3). The curves are for fits 
to all data up to t = τv, but the square symbols are for fits up to the peak in the strain 
curve (see Figure 6b). 
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Figure 8. Ratio of apparent bulk modulus of gas/liquid mixture, 

 
K

L

A , to true bulk 
modulus of liquid, KL, for several values of the volume fraction of air, v, as a function of 
the applied pressure, p. The calculation assumes KL = 2.2 GPa (characteristic of water) 
and p0 = 0.1 MPa (atmospheric pressure). 
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a)  
 

b)  
 
Figure 9. Pressure distribution as a function of radial position, u = r/R, and time, θ = 
t/τv for volume fractions of air equal to (a) v = 0.0001 and (b) v = 0.03. 
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Figure 10. Axial strain, εz, as a function of time, θ = t/τv for volume fractions of air (for 
curves from left to right) equal to v = 0, 0.01, 0.02, 0.03. 
 


