The mechanism of internal frost damage is not related to the mechanism of salt scaling. Although it is widely believed that ice causes damage as its volume increases during freezing, the actual mechanism is crystallization pressure, just as in the case of salt crystallization. The role of the air voids incorporated into concrete is to furnish sites for nucleation of ice. In some cases, depending on the distribution of pore sizes, pockets of water may be trapped in pores surrounded by ice. If that happens, expansion during subsequent expansion of the ice is
Relevant papers:
“Freezing Gels”, G.W. Scherer, J. Non-Cryst. Solids 155 (1993) 1-25
“Mechanisms of Frost Damage”, G.W. Scherer and J.J. Valenza II, pp. 209-246 in Materials Science of Concrete, Vol. VII, eds. J. Skalny and F. Young (American Ceramic Society, 2005)
This paper was a feature article in JACerS
“Mechanism for Salt Scaling”, J. J. Valenza II and G.W. Scherer, J. Am. Ceram. Soc. J. Am. Ceram. Soc. 89 [4] 1161–1179 (2006)
“Kinetics of Ice Growth in Concrete”, Z. Sun, D. Kumpf, and G.W. Scherer, paper W4-07.1 in Proc. 12th Int. Cong. Cement Chemistry, eds. J.J. Beaudoin, J.M. Makar, L. Raki (National Research Council of Canada, Montreal, Canada, 2007) ISBN 978-0-660-19695-4
“Modeling damage from ice and salt”, G.W. Scherer, pp. 13-23 in Proc. Int. RILEM Symp. On Concrete Modelling (CONMOD ’08), eds. E. Schlangen and G. DeSchutter (RILEM, Bagneux, France, 2008) ISBN-13: 978-2-35158-060-8
“Kinetics of ice growth in cement and concrete”, Z. Sun and G.W. Scherer, pp. 183-190 in Int. RILEM Symp. On Concrete Modelling (CONMOD ’08), eds. E. Schlangen and G. DeSchutter (RILEM, Bagneux, France, 2008) ISBN-13: 978-2-35158-060-8
“Kinetics of ice growth in cement paste”, Z. Sun, O. Abellan & G.W. Scherer, in Proc. 8th Int. Conf. Creep, Shrinkage and Durability of Concrete and Concrete Structures (ConCreep8), Ise-Shima, Japan (2008) 951~956
“Effect of Air Voids on the Dilatation of Mortar During Freezing”, Z. Sun and G.W. Scherer, p. 896-901 in Poromechanics IV, Proc. Fourth Biot Conf. on Poromechanics, New York, 2009. eds. H.I. Ling, A. Smyth, R. Betti (DEStech Publications, Lancaster, PA, 2009)
“Pore size and shape in mortar by thermoporometry”, Z. Sun and G.W. Scherer, Cement Concr. Res. 40 (2010) 740–751
“Measurement and Simulation of Dendritic Growth of Ice in Cement Paste”, Z. Sun and G.W. Scherer, Cem. Concr. Res. 40 (2010) 1393–1402
“Poromechanics of Frost Damage”, G.W. Scherer, pp. 153-168 in Proc. Mechanics and Physics of Porous Solids, Champs-sur-Marne, April, 2011 (Ifsttar, Paris, 2011) ISBN 978-2-7208-2593-4