Conservation of sugaring marble by hydroxyapatite: some recent developments on producing and treating decayed samples

Enrico Sassoni¹,², Gabriela Graziani¹, Elisa Franzoni¹, George W. Scherer²

¹ Dept. Civil, Chemical, Environmental & Materials Engineering (DICAM), University of Bologna, Italy
² Dept. Civil & Environmental Engineering (CEE), Princeton University, USA

enrico.sassoni2@unibo.it, Website: https://events.unibo.it/hap4marble/

BACKGROUND

Architectural decorations and sculptures made of marble, when they are exposed outdoor, deteriorate because:

- Temperature variations cause the opening of cracks between calcite grains, so that grains detach and fall
- Rain causes the dissolution of calcite grains, so that the marble carved surface is lost

The products currently available are not effective and/or durable in preserving marble against these deterioration causes

In 2011, we proposed the use of hydroxyapatite (HAP) to preserve carbonate stones [1]

HAP can be formed directly inside marble and over marble surface, from the reaction between calcite and an aqueous solution of diammonium hydrogen phosphate (DAP) in mild conditions

![HAP Formation Diagram](Image)

RESEARCH AIMS

1. **Accelerated ageing**
 - To study the consolidating efficacy of the HAP treatment, artificially aged samples with characteristics similar to naturally sugaring marble (i.e. micro-cracks more diffused near the surface) are needed

2. **Treatment parameters**
 - The treatment parameters need to be optimized to reduce the porosity of the HAP layer, increase the surface coverage and prevent the formation of soluble calcium phosphate phases

3. **Consolidation**
 - The ability of the HAP treatment to re-establish cohesion between calcite grains and restore the strength of weathered marble, without causing over-consolidation, needs to be investigated

4. **Protection**
 - The ability of the HAP treatment to prevent the dissolution of marble surface in rain, by formation of a dense coating with low solubility, needs to be investigated

MATERIALS AND METHODS

1. **Ageing**
 - Ageing was produced by heating samples over a hot plate, the temperature and time of heating being calculated by a theoretical model. Damage was assessed by measuring the modulus Eσ

2. **Treatment parameters**
 - The influence of several treatment parameters (ethanol addition, pH control, double treatments [2]) was investigated and the effects evaluated by SEM-FIB

3. **Consolidation**
 - The increase in marble cohesion after consolidation was assessed by measuring the increase in modulus Eσ and observing the new phosphate phases by ESEM

4. **Protection**
 - The resistance to dissolution was assessed by measuring the increase in pH vs time of an aqueous solution of HNO₃ initially at pH=5 (simulating slightly acid rain)

RESULTS AND DISCUSSION

- **Heat treatment**
 - Heating at 200 °C for 20 sec was predicted to cause an average ΔEσ = -35% in the first 1 cm from the surface, leaving the rest undamaged. Experimental results confirmed the prediction

- **Ethanol addition**
 - Ethanol addition favors marble surface coverage and helps reduce the porosity of the HAP layer, as it weakens the hydration shell of the phosphate ions in solution

- **Double application**
 - Double application of the HAP treatment with 10 vol% ethanol was able to fully restore the Eσ thanks to HAP formation inside cracks formed by artificial ageing

- **HAP coating**
 - The HAP coating was able to reduce marble dissolution, even if cracks appeared after the test. The orientation of the underlying calcite grains influences the film durability

CONCLUSIONS AND FUTURE WORK

- The developed model allows to produce samples with a desired level of damage.
- The addition of ethanol is effective in promoting HAP formation and reducing the film porosity, thus allowing to achieve a good consolidating and protecting ability
- Ethanol has a competitive effect, as it weakens the hydration shell of the phosphate ions in the solution but it is adsorbed on calcite surface.
- Future research will be aimed at identifying by NMR possible alternative solvents that may weaken the hydration shell without being adsorbed on calcite

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Horizon 2020 programme through the Maria Skłodowska-Curie HAP4MARBLE Project (Multi-functionalization of hydroxyapatite for the restoration and preventive conservation of marble artworks, grant agreement No 655239)

REFERENCES